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ABSTRACT

A complex proportionate-type normalized least mean square algo-
rithm is derived by minimizing the second norm of the weighted
difference between the current estimate of the impulse response and
the estimate at the next time step under the constraint that the adap-
tive filter a posteriori output is equal to the measured output. The
weighting function is assumed positive but otherwise arbitrary and
it is directly related to the update gains. No assumptions regarding
the input signal are made during the derivation. Different weights
(i.e., gains) are used for real and imaginary parts of the estimated
impulse response. After additional assumptions special cases of the
algorithm are obtained: the algorithm with one gain per impulse re-
sponse coefficient and the algorithm with lower computational com-
plexity. The learning curves of the algorithms are compared for sev-
eral standard gain assignment laws for white and colored input. It
was demonstrated that, in general, the algorithms with separate gains
for real and imaginary parts have faster convergence.

Index Terms— Adaptive filtering, convergence, least mean
square algorithms.

1. MOTIVATION

The complex least mean square (CLMS) adaptive filter [1] was orig-
inally proposed to extend the least mean square algorithm from real-
valued signals to complex-valued signals. To date there exists no
equivalent extension of proportionate-type normalized least mean
square algorithms (PtNLMS) from real-valued signals to complex-
valued signals. PtNLMS algorithms are a family of adaptive algo-
rithms which update the estimate of the impulse response in a man-
ner which is proportional to the magnitude of the current estimate of
the impulse response. Examples of PtNLMS algorithms include the
proportionate normalized least mean square (PNLMS) [2] algorithm,
and μ-PNLMS (MPNLMS) [3] algorithm.

In this paper, the PtNLMS algorithm is extended from real-valued
signals to complex-valued signals. The resulting algorithm is named
the complex PtNLMS (CPtNLMS) algorithm. The CPtNLMS algo-
rithm updates the real and imaginary parts of the unknown impulse
response by applying separate real-valued gains. Additionally, sev-
eral simplifications of the CPtNLMS will be proposed.

This paper is organized in the following manner. First, nota-
tion and the adaptive filter framework will be introduced. Next the
derivation of the CPtNLMS algorithm will be presented as well as
several simplifications and interpretations. After that, examples of
CPtNLMS algorithms and their implementations will be discussed.
Next simulation results for various CPtNLMS algorithms will be

presented and finally a conclusion summarizing the results found in
this paper will be given.

2. COMPLEX ADAPTIVE FILTER ALGORITHM
INTRODUCTION AND NOTATION

2.1. Notation

Let A denote an arbitrary complex-valued matrix. The conjugate,
transpose, and conjugate transpose of the matrix A are denoted by
A∗, AT , and AH ; respectively. Additionally, Re(A) and Im(A)
represent the real and imaginary parts of the complex matrix A.
These operators have the same meanings when employed on vectors
and scalars where applicable. Let the ith component of any vector
a be denoted as ai and the (i, j)th entry of any matrix A as [A]ij
throughout this work. Next, for vector a with length L we define the
function Diag(a) as an L × L matrix whose diagonal entries are
the L elements of a and all other entries are zero. Finally, we define
j =

√−1.

2.2. Complex Adaptive Filter Framework

All signals are complex throughout this work. Let us assume there is
some complex input signal denoted as x(k) for time k that excites an
unknown system with complex impulse response w. Let the output
of the system be y(k) = xH(k)w(k) where x(k) = [x(k), x(k −
1), . . . , x(k−L+1)]T and L is the length of the filter. The measured
output of the system, d(k), contains complex-valued measurement
noise v(k) and is equal to the sum of y(k) and v(k). The impulse
response of the system is estimated with the adaptive filter coefficient
vector, ŵ(k), which has length L also. The output of the adaptive
filter is given by ŷ(k) = xH(k)ŵ(k). The error signal e(k) is
equal to difference of the measured output, d(k) and the output of
the adaptive filter ŷ(k).

For notational convenience we will suppress the time-indexing
notation and instead use the following convention. For an arbitrary
vector a we denote a(k + 1) = a+ and a(k) = a.

3. COMPLEX PROPORTIONATE-TYPE NORMALIZED
LEAST MEAN SQUARE ALGORITHM DERIVATION

3.1. Complex PtNLMS Algorithm Using Separate Gains for Co-
efficient Imaginary and Real Parts

The estimated weight vector can be written in terms of real and imag-
inary parts ŵ = ŵR+jŵI , where ŵR and ŵI are vectors of length
L consisting of the real and imaginary components of ŵ, respec-
tively. Motivated by the derivation of the normalized least mean
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square (NLMS) algorithm [4] let us consider the following mini-
mization problem

min
ŵ+

(ŵ+
R − ŵR)

TM−1
R (ŵ+

R − ŵR)

+(ŵ+
I − ŵI)

TM−1
I (ŵ+

I − ŵI)

such that d = xHŵ+
(1)

where MR and MI are real-valued, nonnegative, diagonal matrices,
which have the property that Tr[MR] = Tr[MI ] = L.

The method of Lagrange multipliers will be used to cast this
constrained minimization problem into one of unconstrained mini-
mization. Prior to performing this step the following definitions are
introduced to aide in the derivation. Let

ω̂ =

[
ŵR

ŵI

]
M =

[
MR 0
0 MI

]
. (2)

The following form of xHŵ will also be employed

xHŵ = xT
RŵR + xT

I ŵI + jxT
RŵI − jxT

I ŵR

= [xT
R, x

T
I ]

[
ŵR

ŵI

]
+ j[−xT

I , x
T
R]

[
ŵR

ŵI

]

= [xH , jxH ]

[
ŵR

ŵI

]

= [xH , jxH ]ω̂. (3)

Using these definitions the minimization problem can be rewritten
as

min
ω̂+

J(ω̂+) = (ω̂+ − ω̂)TM−1(ω̂+ − ω̂)

+ λ
(
d− [xH , jxH ]ω̂

)

+ λ∗
(
d∗ − [xT ,−jxT ]ω̂

)
. (4)

Next taking the derivative of J(ω̂+) with respect to ω̂+ and setting
the result to zero yields

∂J(ω̂+)

∂ω̂+
= 2M−1(ω̂+ − ω̂)− λ

[
x∗

jx∗

]
− λ∗

[
x

−jx

]

= 0. (5)

Multiplying (5) from the left by M and rearranging terms allows us
to write

2(ω̂+ − ω̂) = λM

[
x∗

jx∗

]
+ λ∗M

[
x

−jx

]
. (6)

Next we employ the relationships given by [xH , jxH ](ω̂+−ω̂) = e
and [xT , −jxT ](ω̂+−ω̂) = e∗ to form the following linear system
of equations

2

[
e∗

e

]
=

[
xH(MR +MI)x xT (MR −MI)x
xH(MR −MI)x

∗ xH(MR +MI)x

] [
λ
λ∗

]
. (7)

It is straightforward to invert the matrix given in (7) which allows us
to find

λ = 2
xH(MR +MI)xe

∗ − xT (MR −MI)xe

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

. (8)

Returning our attention to (6) this equation can be rewritten as

2(ω̂+ − ω̂) = λ

[
MRx

∗

jMIx
∗

]
+ λ∗

[
MRx

−jMIx

]
. (9)

Using the definition in (2) allows us to write

2(ŵ+
R − ŵR) = λMRx

∗ + λ∗MRx

2(ŵ+
I − ŵI) = jλMIx

∗ − jλ∗MIx. (10)

Next using (10) and (8) we form

ŵ+ − ŵ = (ŵ+
R − ŵR) + j(ŵ+

I − ŵI)

=
λ

2
MRx

∗ +
λ∗

2
MRx− λ

2
MIx

∗ +
λ∗

2
MIx

=
λ

2
(MR −MI)x

∗ +
λ∗

2
(MR +MI)x

=

[
xH(MR +MI)xe

∗ − xT (MR −MI)xe
]

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR −MI)x
∗

+

[
xH(MR +MI)xe− xH(MR −MI)x

∗e∗
]

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR +MI)x.

(11)

Next the step-size parameter β is introduced to allow control over
the update. The resulting CPtNLMS algorithm with separate gains
for real and imaginary coefficients is given by

ŵ+ = ŵ

+β

[
xH(MR +MI)xe

∗ − xT (MR −MI)xe
]

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR −MI)x
∗

+β

[
xH(MR +MI)xe− xH(MR −MI)x

∗e∗
]

[xH(MR +MI)x]
2 − |xT (MR −MI)x|2

(MR +MI)x.

(12)

3.2. CPtNLMS Algorithm Simplifications

The CPtNLMS algorithm given in (12) can be simplified under cer-
tain conditions. For instance it is straightforward to show that by
setting MR = MI = G in (12) the algorithm is reduced to

ŵ+ = ŵ + β
Gxe

xHGx
. (13)

As it turns out (13) is the solution to the following minimization

min
ŵ+

(ŵ+ − ŵ)HG−1(ŵ+ − ŵ)

such that d = xHŵ+
(14)

where G is the stepsize control matrix. This version of the CPtNLMS
algorithm uses one real-valued gain to simultaneously update both
the real and imaginary parts of the estimated coefficient.

A separate simplification to (12) can be made if it is assumed
that

xT (MR −MI)x ≈ 0. (15)

Using this approximation (12) is reduced to

ŵ+ = ŵ + β
MR(xe+ x∗e∗) +MI(xe− x∗e∗)

xH(MR +MI)x
. (16)

This version of the CPtNLMS algorithm reduces the computational
complexity of (12) and will be referred to as the simplified CPtNLMS
algorithm.
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Table I

Stepsize Control Matrix for CPtNLMS Algorithm
Using One Real-valued Gain per Coefficient

F [|ŵl(k)|, k] = Specified by the user
γmin(k) = ρ max{δp, F [|ŵ1(k)|, k], . . . ,

F [|ŵL(k)|, k]}
γl(k) = max{γmin(k), F [|ŵl(k)|, k]}
gl(k) =

γl(k)
1
L

∑L
i=1 γi(k)

G(k) = Diag{g1(k), . . . , gL(k)}

3.3. Alternative Representations of the CPtNLMS Algorithm

There are alternatives ways to represent (11). For instance one could
rearrange terms such that

ŵ+ − ŵ = (ŵ+
R − ŵR) + j(ŵ+

I − ŵI)

= MR
λ∗x+ λx∗

2
+MI

λ∗x− λx∗

2
.

(17)

Using (8) it is easy to show that

λ∗x+ λx∗

2
=2

Re [ex]− Re
[
xT (MR−MI )x

xH (MR+MI )x
ex∗

]

xH(MR +MI)x− |xT (MR−MI )x|2
xH (MR+MI )x

λ∗x− λx∗

2
=2j

Im [ex] + Im
[
xT (MR−MI )x

xH (MR+MI )x
ex∗

]

xH(MR +MI)x− |xT (MR−MI )x|2
xH (MR+MI )x

. (18)

Combining ( 17 ) and (18), and introducing the stepsize parameter β
will result in an alternate form of the CPtNLMS algorithm. In this
version of the CPtNLMS algorithm, the estimated impulse response
coefficients are updated by one purely real term multiplying MR and
another purely imaginary term multiplying MI .

4. CPtNLMS ALGORITHM AND IMPLEMENTATIONS

In this section several examples of CPtNLMS algorithms are pre-
sented. The stepsize control matrix for the CPtNLMS algorithm us-
ing one real-valued gain per coefficient is shown in Table I. The term
F [|ŵl(k)|, k], with l ∈ {1, 2, . . . , L}, governs how each coefficient
is updated. In the case when F [|ŵl(k)|, k] is less than γmin, the
quantity γmin is used to set the minimum gain a coefficient can re-
ceive. The constant δp, where δp ≥ 0, is important in the beginning
of learning when all of the coefficients are zero and together with
ρ, where ρ ≥ 0, prevents the very small coefficients from stalling.
G(k) = Diag {g1(k), . . . , gL(k)} is the time-varying stepsize con-
trol diagonal matrix. The constant δ is typically a small positive
number used to avoid overflowing. Some common examples of the
term F [|ŵl(k)|, k] are F [|ŵl(k)|, k] = 1, F [|ŵl(k)|, k] = |ŵl(k)|,
and F [|ŵl(k)|, k] = ln(1 + μ|ŵl(k)|), which result in the com-
plex NLMS (CNLMS), complex PNLMS (CPNLMS), and complex
MPNLMS (CMPNLMS) algorithms, respectively. The parameter μ
is used to adjust the amount of compression created by the logarithm
function.

Similarly the CPtNLMS algorithm using separate real-valued
gains for coefficients real and imaginary parts is shown in Table II.
In this case the user specifies two functions FR[|ŵR,l(k)|, k] and
FI [|ŵI,l(k)|, k] which govern how the real and imaginary parts of
a coefficient are updated. Next a minimum gain for the real and
imaginary parts are calculated, γmin,R(k) and γmin,I(k), respec-
tively. Finally, the stepsize control matrix for the real, MR(k), and

Table II

Stepsize Control Matrix for CPtNLMS Algorithm
Using Separate Real-valued Gains for
Coefficient Real and Imaginary Parts

FR[|ŵR,l(k)|, k] = Specified by the user
FI [|ŵI,l(k)|, k] = Specified by the user
γmin,R(k) = ρ max{δp, FR[|ŵR,1(k)|, k], . . . ,

FR[|ŵR,L(k)|, k]}
γmin,I(k) = ρ max{δp, FI [|ŵI,1(k)|, k], . . . ,

FI [|ŵI,L(k)|, k]}
γR,l(k) = max{γmin,R(k), FR[|ŵR,l(k)|, k]}
γI,l(k) = max{γmin,I(k), FI [|ŵI,l(k)|, k]}
mR,l(k) =

γR,l(k)
1
L

∑L
i=1 γR,i(k)

mI,l(k) =
γI,l(k)

1
L

∑L
i=1 γI,i(k)

MR(k) = Diag{mR,1(k), . . . ,mR,L(k)}
MI(k) = Diag{mI,1(k), . . . ,mI,L(k)}

imaginary, MI(k), parts are obtained. An example of the terms
FR[|ŵR,l(k)|, k] and FI [|ŵI,l(k)|, k] is FR[|ŵR,l(k)|, k] =
|ŵR,l(k)| and FI [|ŵI,l(k)|, k] = |ŵI,l(k)|. This yields the com-
plex PNLMS algorithm using separate gains for coefficient real and
imaginary parts. In a similar vein the complex MPNLMS algorithm
can be created by setting FR[|ŵR,l(k)|, k] = ln(1+μ|ŵR,l(k)|) and
FI [|ŵI,l(k)|, k] = ln(1 + μ|ŵI,l(k)|).

5. SIMULATION RESULTS

In this section we compare the mean square error (MSE) versus iter-
ation for several CPtNLMS algorithms. In Figures 1 and 2 we plot
the real and imaginary parts of the impulse response. The impulse
response used has length L = 512. The stepsize control parame-
ter β was set to a value of 0.5 for all of the CPtNLMS algorithms.
The input signal used in the first set of simulations was white, cir-
cular, complex, Gaussian, stationary with power σ2

x = 1. The noise
used in all simulations was white, circular, complex, Gaussian, sta-
tionary with power σ2

v = 10−4. The parameter values ρ = 0.01,
δ = 0.0001, δp = 0.01, and μ = 2960 were also used.

The MSE learning curve performance for the CNLMS, CPN-
LMS with one real-valued gain per coefficient, simplified CPNLMS
with separate gains for real and imaginary parts, CPNLMS with sep-
arate gains for the real and imaginary parts, CMPNLMS with one
real-valued gain per coefficient, simplified CMPNLMS with separte
gains for the real and imaginary parts, and CMPNLMS with sepa-
rate gains for the real and imaginary parts algorithms are depicted
in Figure 3. Here we see that the CPtNLMS algorithms outperform
the CNLMS algorithm in the transient regime. The simplified algo-
rithms perform virtually the same as the exact separate gain algo-
rithms. Additionally, the separate gain for real and imaginary parts
of coefficients version result in better convergence than the single
real-valued gain versions.

In Figure 4 the MSE performance is displayed for a colored in-
put signal. The input signal consists of colored noise generated by a
single pole system as follows:

x(k) = γx(k − 1) + α(k) (19)

where x(0) = α(0), α(k) is a white, circular, complex, Gaussian,
stationary process with power σ2

α = 1, and complex pole γ. The
value γ = 0.3560− 0.8266j was used in this simulation. The mag-
nitude of γ is equal to 0.9, which implies σ2

x = σ2
α/(1 − |γ|2) =

5.263. Similar trends hold for the colored and white input signal
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Fig. 1. Real Part of Impulse Response
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Fig. 2. Imaginary Part of Impulse Response

cases. Of course the convergence rate is lower because of the col-
ored input.

6. CONCLUSION

In this work we have introduced a family of complex PtNLMS al-
gorithms which were derived by minimizing the second norm of the
weighted difference between the estimated impulse response at the
current time step and the next time step under the constraint that
the adaptive filter output at the next time step equals the measured
output at the current time. The choice of the stepsize control ma-
trix is arbitrary during the derivation which allows the user to design
algorithms to suit their needs. Additionally, it was shown through
simulation that adapting the real and imaginary components of the
estimated impulse response independently of each other results in in-
creased MSE rate of convergence. Moreover, it can be noticed from
the simulations that the performances of the complex algorithm with
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Fig. 3. CPtNLMS Learning Curve Comparison
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Fig. 4. CPtNLMS Learning Curve Comparison with Colored Input

separate gains for real and imaginary parts and its simplified version
are nearly indistinguishable.
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